Carbohydrates (also known as sugars or saccahrides)

carbon + water : approximate formula C_nH_{2n}O_n

glucose (in bound form) is the most abundant organic compound 4x10¹¹ metric tons of carbon dioxide are converted to glucose annually by plants

0.02% of the sun's energy incident on this planet used for:

photosynthesis

$$CO_2 + H_2O$$
 — $C_6H_{12}O_6 + O_2$

Carbohydrates occur in every living organism

Glucose (also called dextrose)

Carbohydrates - classification

carbon + water : approximate formula C_nH_{2n}O_n

triose: 3 carbons

aldose: aldehyde

pentose : 5 carbons

ketose: ketone

hexose : 6 carbons

tetrose: 4 carbons

오 오

오

(a triose) Glycerol

CHO CHO

HO-CH₂OH 1 1 오

(an aldohexose) Glucose

> ĊH₂OH CH2OH <u></u> 우 우 T

(a ketohexose) Fructose

> CH₂OH CHO CHO <u>무</u> HOH 오

Ribose (an aldopentose)

Carbohydrates - Configuration & Fischer Projections

Fischer projection is represented by two crossed lines: horizontal lines represents bonds coming out toward you

$$CHO$$
 CHO CHO

(R)-glyceraldehyde

Fischer projection of (R)-glyceraldehyde

Fischer projection of Glucose

Carbohydrates - D & L Sugars

at the highest numbered stereogenic center D-sugar is defined as one that has R configuration

at the highest numbered stereogenic center L-sugar is defined as one that has S configuration

Ŧ

CHO

Ŧ

오

오

CH₂OH

D-Glyceraldehyde

D-Fructose

Carbohydrates - Hemiacetal Formation

mechanism (review):

a molecule will form such a ring when it can In nature, formation of 5- and 6-member rings is favored,

198

Carbohydrates - Hemiacetal Formation

199

6-membered rings exist in energy minimum chair forms

6-membered sugar rings are called pyranoses

5-membered sugar rings are called furanoses

either R or S configuration, with OH group in either equatorial or axial position The intramolecular cyclization reaction creates a new stereogenic carbon with

term β used if OH at C1 is sames side to CH₂OH group of C6 term α used if OH at C1 is opposite side to CH₂OH group of C6

9

Carbohydrates - Hemiacetal Formation

The two stereoisomers are interconverting structural isomers called **anomers**. Differ only in stereochemistry at C1 position: known as the anomeric carbon

Formation of 5-member ring is possible for D-Glucose, but it exists predominantly as 6-membered ring.

Fructose, on the other hand, exists predominantly as 5-member ring (furanose)

Carbohydrates - Acetal Formation

into an acetal called a glycoside Treatment with dilute acid & alcohol converts only the OH at the anomeric position

The α anomer with the methoxy group in axial position is favored

Reducing or non-reducing sugars

Silver nitrate in aqueous ammonia is allowed to react with sugar. If a silver mirror is observed, then the sugar is reducing

Structural motifs for reducing sugars: (others, e.g. acetal are non-reducing)

is sweetest of suc

Example:

Reducing or non-reducing sugars - Example

the disaccharide below is sucrose (Table Sugar)

sweetness index 100

Is it a reducing or non-reducing sugar? Non-reducing

Identify the anomeric carbons -see arrows

Are they acetals or hemiacetals? Acetals

 α -D-glucopyranosyl- β -D-fructofuranoside

Artificial sweeteners - Examples

saccharin

sodium cyclamate

Splenda (sucralose)

Polysaccharides = polymers of sugars

Disaccharides = 2 sugars linked Trisaccharides = 3 sugars linked Tetrasaccharides = 4 sugars linked Oligosaccarides - many sugars linked

Example: Cellulose

bacteria have a cellulose hydrolysis enzyme called cellulase ruminants such as cows or goats have bacteria in their stomach to break it down. most mammals cannot digest cellulose directly. Cellulose is a polymer of simple repeating monosaccharide units (D-glucose).

humans cannot metabolize β linkages

Amylopectin is the other component in starch (~80%), which is similar to glycogen